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The Waipounamu Erosion Surface: questioning the antiquity of
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eustatic fluctuations, the Waipounamu Erosion Surface
must be regarded as being diachronous, a composite
formed during successive sea-level encroachments
and planation episodes. Comparable diachroneity has
been demonstrated at very local scales during Late
Cretaceous onset of transgression/planation by Cramp-
ton, Schiøler & Roncaglia (2006).

New Zealand’s biota is regarded as having evolved
largely from plants and animals sequestered on a
drifting fragment of the Gondwanaland supercontinent.
In isolation for more than 80 million years, a distinctive
New Zealand biota is envisaged as evolving, to a
greater or lesser extent, from archaic Gondwanan
stock (Fleming, 1962, 1979; Mildenhall, 1980; Stevens,
1985; Cooper & Millener, 1993). This hypothesis has
been popularly referred to as ‘Moa’s Ark’ (Bellamy,
Spingett & Hayden, 1990). In contrast, an important
corollary to the wave-planation hypothesis is that the
amount of landmass shrank dramatically from Late
Cretaceous to Early Miocene time (85 to 22 million
years) at which time most, if not all, of the New Zealand
region was inundated (LeMasurier & Landis, 1996).
During this time, we suggest that the original Moa’s
Ark (Zealandia) probably sank beneath the sea and
lost its precious cargo. Although previous workers,
treating the surface as a peneplain, recognized that
Palaeogene transgression reduced the area of land
in the New Zealand region (e.g. Wellman, 1953;
Fleming, 1962; Suggate, Stevens & Te Punga, 1978;
Stevens, 1985; Cooper & Cooper, 1995; King et al.
1999), they nevertheless portray the region as one
of substantial land even at the time of maximum
transgression (Fig. 1). The main arguments supporting
the existence of sizeable remaining land areas during
Oligocene–Early Miocene time are not clear and have
never been properly discussed. They appear to depend
substantially, but tacitly, on three factors: (1) the
nature and diversity of the modern New Zealand flora
and fauna, (2) the fossil record and (3) the absence
today of middle Cenozoic marine sedimentary rocks
from inland portions of North and South islands as
well as from central Fiordland and Stewart Island.
Interpretations drawn from these starting points may
not be soundly based and, most worryingly, probably
suffer from circular reasoning (Waters & Craw, 2006).

We maintain that the modern landscape combined
with the Cenozoic sedimentary record provide evidence
which is incompatible with the existence of substantial
land areas of Late Oligocene–earliest Miocene age.
Furthermore, we argue that available data are com-
patible with complete inundation of the New Zealand
region during m01.7131 Tm
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Figure 1. Map showing localities referred to in text and extent of land during maximum transgression as proposed by Fleming (1962).
We propose that all the land areas shown by Fleming, as well as other authors such as Stevens (1974, 1985), Kamp (1986) and King
(1998, 2000), may have been completely submerged during the Oligocene. HR – Hawkdun Range, PR – Pisa Range, ML – Mt Luxmore,
OMR – Old Man Range. The NE–SW line refers to the cross-section shown in Figure 5.

It is important to distinguish between the Waipoun-
amu Erosion Surface and the ‘Cretaceous Peneplain’.
The ‘Cretaceous Peneplain’ (also referred to as Otago
Peneplain) refers to a widespread unconformity of
terrestrial origin. It is characterized by an unconformity
with weakly indurated Late Cretaceous sand, gravel and
coal measures resting upon indurated and deformed
Palaeozoic–Mesozoic igneous, sedimentary and meta-
morphic basement. A non-marine origin is inferred
from fluvial and paludal features of the overlying
sedimentary cover. In contrast, the Waipounamu
Erosion Surface is of marine origin. It too is

extensively developed directly onto the Palaeozoic–
Mesozoic basement, while elsewhere it constitutes a
disconformity developed upon the scoured top of the
non-marine strata covering the ‘Cretaceous Peneplain’.
In areas where the Waipounamu Erosion Surface is
developed directly on older basement, the ‘Cretaceous
Peneplain’ is absent. Formation by marine and littoral
processes is inferred from marine fossils, glauconite
and sedimentary features in the basal sedimentary
cover. Thus the two unconformities are sub-parallel
surfaces. In many
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Figure 2. The local New Zealand biostratigraphic subdivision
for latest Eocene, Oligocene and earliest Miocene time is based
on marine faunas f
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Figure 3. Spatial relationships between the ‘Cretaceous Peneplain’ and the Waipounamu Erosion Surface. Assuming an original
high-relief mountainous landscape in Zealandia dating from middle Cretaceous
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Figure 4. Hawkdun Range viewed from the south showing the distinctive planar summit at 1500 m (location in Fig. 1). This high-level
plateau is a remnant of the Waipounamu Erosion Surface, eroded into Palaeozoic–Mesozoic greywacke during Cretaceous–Oligocene
marine transgression. The range has been uplifted during the last five million years. Inferred Palaeogene marine cover has been
removed by Neogene fluvial and periglacial erosion processes. However, a well-developed marine transgressive Palaeogene sequence
culminating in limestone and greensand rests on greyw
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Figure 6. Stratigraphic relations between basement and cover
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transgression is generally shown as being less than
today but still substantial.

Although detailed evidence for placement of
shorelines has not been discussed by previous workers
(e.g. Fleming, 1979; Hornibrook, 1992; King et al.
1999), different combinations of eight factors appear
to have influenced palaeogeographic map reconstruc-
tions:

(a) The interpretation of Oligocene submarine un-
conformities as surfaces of subaerial erosion.

(b) The interpretation of the most inland outcrops of
Oligocene–Early Miocene marine sedimentary
rock as near proxies f431 609.5651 ar
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Figure 7. Aviemore, a mesa-like remnant of the stripped Waipounamu Erosion Surface; to immediate right of the Lake Aviemore
Dam (see Fig. 1 for location). Aviemore is the most inland remnant of preserved Cenozoic marine sequence. Gravelly Eocene marine
sediments rest directly on greywacke basement. These are overlain by a transgressive marine sequence including Oligocene limestone
and greensand. The crest of the Hawkdun Range (Fig. 4; see HR on Fig. 1) is visible in the far distance about 40 kilometres away.
Pleistocene alluvial terraces are conspicuous along the southern (left) side of the valley. View looking NW up the Waitaki River valley.
Photo: Lloyd Homer, GNS Science.

Browne, 1989; I. McDermid, unpub. r
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surfaces is attributed to late Cenozoic uplift and
associated terrestrial erosion. Not only that, but the
absence of erosion surfaces further to the west can itself
be attributed to ongoing Neogene uplift and erosion.
Reduced erosion at lower elevations has permitted the
outlying marine remnants to be preserved.
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3.f. Evidence that is permissive but n
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last 70 million years. Crampton et al. (2006) have
established that the fossil record for post-Eocene
molluscs is representative of 40–45 % of the original
total molluscan fauna. In contrast, the terrestrial fossil
record is sparse and incomplete. Terrestrial animal
fossils older than Pleistocene are particularly scarce,
and fossil plants, with noted exceptions from Miocene
time, are known mainly from pollen studies. Only the
last 22 million years of terrestrial life are known with
any modicum of detail.

In spite of the incomplete record, there remains a
widely held belief that a substantial proportion of the
extant biota has evolved from plants and animals that
were present when New Zealand separated from Gond-
wanaland about 85 million years ago. Modern workers
have generally maintained the continuous existence of a
diverse Gondwanan terrestrial biota (Stevens, McGlone
& McCulloch, 1988; Cooper & Cooper, 1995; Lee,
Lee & Mortimer, 2001) and reference to ‘Gondwanan
biota’ is commonplace. A biotic ‘bottleneck’ within the
Oligocene was proposed by Cooper & Cooper (1995),
and Pole (2001) considered the case that the New
Zealand flora represents a complete biotic turnover
from the original Gondwanan biota. Both of these
papers have assumed the continuous existence of a
landmass, though with reduced area in the Oligocene.

Lee, Lee & Mortimer (2001) argued for a continuous
Cenozoic terrestrial flora record in New Zealand. They
recognize only one unit that spans the critical Oligocene
to earliest Miocene period: the Gore Lignite Measures.
These strata are portrayed by Lee, Lee & Mortimer
(2001) to have accumulated during the interval between
16 and 31 million years ago; no breaks in this sequence
are discussed. Although palynological evidence for
sedimentation of the Gore Lignite Measures during this
period is well documented (Pocknall, 1990), no case
has been made for continuous terrestrial sedimentation
(e.g. Isaac & Lindqvist, 1990) and middle Cenozoic
marine beds are well known in the area (Cooper, 2004;
see also Section 3.e above). Rather enigmatically, the
palaeogeographic maps of Lee, Lee & Mortimer (2001)
show the Gore area lying 100–200 km offshore at both
20 and 30 million years ago.

New Zealand palynologists have long been aware
of a terrestrial floral turnover in the vicinity of the
Oliogcene/Miocene boundary. The spore/pollen range
chart of Couper (1960) shows this clearly, even within
the limits of accurate dating at the time. Immediately
after the demise of many Palaeogene taxa there was
a sudden and dramatic influx of new Neogene taxa,
ancestral to the present New Zealand flora. There was
also
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flooding of Zealandia. The ages of these fossil biotas,
mainly palynomorphs, are just too imprecise.

In the last few decades, two very exciting fossil biotas
of Early to Middle Miocene age have been discovered
in New Zealand (Lee, Lee & Mortimer
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What then, is the evidence for a landmass in this
region during the Oligocene? Although not discussed
by pre
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in areas south of the Tableland (e.g. Buller region),
where the unconformity is overlain by non-marine
strata, no planar Cenozoic erosion surface has been
documented. In fact, Nathan (1996, p. 28) recorded a
‘local relief of up to 50 m beneath the Buller Coalfield’.
Alteration of basement rock underlying the erosion
surface in the Northwest Nelson–Buller region has been
interpreted as being due to chemical weathering and
cited as evidence supporting peneplanation (Nathan
et al. 1986). Elsewhere in the South Island, similar
alteration effects have formed along the Waipounamu
Erosion Surface unconformity by groundwater altera-
tion following deposition of the Cenozoic cover strata.
In contrast, in areas such as the Tableland where the
unconformity surface is of conspicuously planar nature,
the basal sediments are marine. We conclude that while
a ‘mature’ regional landscape formed by Cretaceous–
Eocene subaerial processes, the planar surface of the
Tablelands was formed by marine erosion bevelling an
earlier landscape.

6.d. The Southeast Nelson–North Canterbury island

An Oligocene–Early Miocene landmass approximately
150 × 150 km (Fig. 1) is portrayed in the Southeast
Nelson–North Canterbury area on maps of Fleming
(1962), Stevens (1985) and others. Lying along the
southeastern side of the Alpine Fault and within the
Marlborough fault zone, this is an area of rapid tectonic
uplift and erosion (Wellman, 1979). We are not aware
of any evidence to suggest Oligocene land existed in
this region, nor are there any published discussions
justifying its existence. The only rocks exposed within
the area of the putative island are Mesozoic greywacke
and schist; any Oligocene cover strata or any remnant
erosion surfaces that may have once been present have
been removed by erosion during the past 10 million
y
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Furthermore, at many localities the marine sequence,
including limestone, rests directly on eroded Mesozoic
basement. Apart from a small area at the southeastern
end of this putative Oligocene island, the proposed
landmass lies off the west coast of the present North
Island (Fig. 1). Although the location and extent of the
island have not been discussed, we note that it coincides
approximately with a chain of seamounts lying parallel
to the coastline. Recent work (e.g. King & Thrasher,
1996; Hayward et al. 2001) indicates that these are
Miocene sea-floor volcanoes.

An
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& Landis, 1972; Fulthorpe et al. 1996), and there are
good examples of regions being submerged throughout
the Oligocene and Early Miocene but leaving little or
no surviving sedimentary record. Overlying the basal
Waitemata Group, younger Waitemata sediments are
bathyal–abyssal turbidites that imply rapid subsidence
of the area between 22 and 19 Ma (Isaac et al. 1994).
Thus any original Late Oligocene–Early Miocene (27–
22 Ma) marine sequence may be represented by a
non-depositional hiatus (paraconformity) or have been
eroded away prior to deposition of the basal Waitemata
Group beds (22–21 Ma).

Study of remnant outliers of Oligocene strata in
the Coromandel Peninsula (directly east of Auckland;
Fig. 1) shows a basal unconformity overlain by fan-
delta sediments of Early to middle Oligocene age that
are in turn overlain by younger Oligocene shallow mar-
ine limestone (Dix & Nelson, 2004). A prominent intra-
formational erosion surface separates the lower shelf
clastic sediment and limestone from overlying deep-
water Oligocene–Early Miocene limestone (Dix &
Nelson, 2004). This surface, interpreted as a sequence
boundary by Dix & Nelson (2004), separates a highly
variable, carbonate-dominated, transgressive basal
marine sequence from overlying more uniform, and
slightly less steeply dipping, deep sea carbonate
sequence. Limestone-forming conditions persisted
from Late Oligocene (24 Ma) to Early Miocene time
(21 Ma).

6.g. Putative landmasses north of New Zealand

Herzer (1998, 2003) and Lee, Lee & Mortimer
(2001) ha
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Howe Island is less than 1 % as large as New Zealand,
and its land surface at least 10 million years younger.
The Lord Howe Island biota is remarkably diverse with
8.6 genera of endemic angiosperms per km2, whereas
New Zealand has 0.001 genera per km2 (Lee, Lee &
Mortimer, 2001). The Lord Howe fauna includes a
bat, gecko, skink and an abundance of freshwater
and land invertebrates. Native birds, now depleted by
introduced predators, included a flightless rail. Extinct
land animals included a giant horned turtle (Morris &
Ballance, 2003).

There can be no doubt that the Lord Howe endemic
fauna and flora have descended from ancestors that
arrived by long-distance dispersal from neighbouring
lands during the last 6.5 million years. Similar
situations exist in many other Cenozoic volcanic
islands, such as Norfolk Island (Green, 1994), Fiji
(Ryan, 2000) and Hawaii (Craddock, 2000). Sanmartin
& Ronquist (2004) have summarized the relative
dispersal rates of species on islands in the Southern
Hemisphere while De Queiroz (2005) has emphasized
the ‘resurrection’ of oceanic dispersal as a mechanism
in the biological literature. We regard New Zealand’s
biota as
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that there has been land continuously in Zealandia,
so there has not been any expectation of finding a
unique biota. Second, if a ‘Zealandian’ biota did exist
as suggested above, it would have been substantially
or totally destroyed by marine inundation in latest
Oligocene time.

This raises a difficulty or paradox for the ‘Moa’s
Ark hypothesis’ with respect to the ancestry of modern
biota on small landmasses (especially oceanic islands)
that are remote to large fragments of dispersed Gond-
wanaland. Just how easy is it to distinguish between
‘Gondwanan’ biota that existed on Gondwanaland in
the Late Cretaceous as opposed to biota that existed on
dispersed fragments of Gondwanaland in the middle
Cenozoic? After all, if a new land area emerged in
the SW Pacific in the middle Cenozoic, it would
be colonized by biota from the nearest persistent
landmasses which would have a large component of
biota that is directly descended from Gondwanan stock.
Herein lies the paradox: the ‘new colonizers’ would
appear to be Gondwanan. This potential effect would
lead to a conclusion that the biota under consideration
is Gondwanan. It is only by consideration of the timing
of divergence obtained from fossils and DNA that we
can distinguish betw
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was submerged from Late Cretaceous to Late Pliocene
or Pleistocene time with occasional small volcanoes
possibly breaking the surface. With Pleistocene uplift
and emergence, the modern Chatham Island terrestrial
biota has become established by colonization through
long-distance dispersal processes (Campbell et al.
2006; Paterson
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